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A two-component two-phase dissipative particle dynamics model
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SUMMARY

Dissipative particle dynamics (DPD)-based models for two-phase flows are attractive for simulating fluid
flow at the sub-micron level. In this study, we extend a DPD-based two-phase model for a single-component
fluid to a two-component fluid. The approach is similar to that employed in the DPD formulation for
two immiscible liquids. Our approach allows us to control the density ratio of the liquid phase to the
gas phase, which is represented independently by the two components, without changing the temperature
of the liquid phase. To assess the accuracy of the model, we carry out simulations of Rayleigh–Taylor
instability and compare the penetration rates of the spikes and bubbles formed during the simulations with
prior results reported in the literature. We show that the results are in agreement with both experimental
data and predictions from Youngs’ model. We report these results for a broad range of Atwood numbers
to illustrate the capability of the model. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

With a growing interest in applications that involve the flow of fluid at sub-micron scales, it
becomes important for us to understand the physics of fluids at these small scales. Applications
where such flows are encountered include nano-scale machining [1], super-fine ink-jet printing
[2] and drug-/gene-delivery to biological cells [3]. Features such as thermal fluctuations play an
increasingly important role as the scales of the system decrease. Continuum formulations for fluid
flow, such as the Navier–Stokes equations, cannot be used at such scales without modifications.
Molecular dynamics (MD) [4], of course, is available as a computational tool at sub-micron
scales, but computational cost precludes it as a tool for routine studies. Therefore, there is a
need to develop computational methods that capture the physics at sub-micron scales and at the
same time are computationally efficient. In this study, dissipative particle dynamics (DPD) [5, 6],
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a particle-based mesoscopic computational method, is developed as a tool for studying a wide
range of liquid–vapor density ratios in two-phase flows.

The formulation of DPD recognizes that not all details at the molecular level are required for
capturing essential physics at the sub-micron level. Hence, coarse-graining can be carried out at the
molecular level to retain only the essential physics. Dissipative ‘particles’ are then, conceptually,
collections of a large number of molecules, though the precise correspondence between the two is
not known a priori. Features such as thermal fluctuations at the sub-micron scale are captured by
DPD [5, 7], and it further offers the flexibility of modeling complex fluids [8–11]. These features
make it an attractive simulation tool for sub-micron fluid flows. For many of the sub-micron flows
encountered, we need to model two phases with varying density ratios. For example, such models
are required for the simulation of nanojets and nanobridges in the presence of an ambient gas. MD
has recently been used [12] for simulations of nanobridges, and it has been shown that the physics
of the breakup process at the nanolevel changes in the presence of an ambient gas compared with
a vacuum.

Single-component two-phase DPD models have been developed in recent years [13–16]. These
models work well in situations where the density ratio of the liquid phase to the vapor phase is
high. This density ratio between two co-existing phases of the single-component fluid is determined
by the temperature of the fluid. If low-density ratios are to be simulated, the temperature has
to be increased. This may not be desirable from a numerical stability viewpoint, especially if
the temperature is close to the critical point of the fluid. In this study, we extend a model for
single-component two-phase flows to model systems that contain an additional component that
could be either a liquid or a gas, i.e. it cannot undergo phase change. This allows us to change the
density ratio by independently changing the properties of one component. Simulations can then
be performed for a wide range of density ratios without changing the simulation temperature.

Since this study involves the development of a model to increase the range of density ratios
that can be simulated using DPD, we need an appropriate test problem to evaluate the model. The
Rayleigh–Taylor (R–T) instability is one such problem. It has been widely studied both numerically
and experimentally. A two-component DPD model has been used in prior work for studying the
R–T instability at a density ratio of 5 [17]. The distinguishing feature of our study relative to that
study is that our study has two phases and two components. In our simulations of R–T instability
at the sub-micron level, several values of density ratio and Atwood number are considered. The
results are compared with experimental data and the predictions from Youngs’ model [18, 19]. We
study the R–T instability initiated by a single-mode perturbation in a two-dimensional box. Such
simulations have been performed earlier using other mesoscopic methods, in addition to DPD
[17]. For example, Nie et al. [20] and Tartakovsky and Meakin [21] have studied two-dimensional
R–T instability using the lattice-Boltzmann method (LBM) and smoothed particle hydrodynamics
(SPH), respectively. He et al. [22] have studied the single-mode R–T instability in three dimensions
using LBM at a density ratio of 3, with the focus on the evolution of the interface in the non-linear
growth stages. It is interesting to observe that potential flow theory [23] predicts that in single-mode
R–T instability, the bubbles, i.e. the part of lighter fluid penetrating into the heavier fluid, move
at a terminal velocity. However, recent numerical simulations [24] have shown that the bubbles in
late-time R–T instability exhibit acceleration. This has been attributed to the presence of vortices in
the bubble–spike interface, where spikes are the part of the heavier fluid penetrating into the lighter
fluid. We observe a similar behavior in this study and the corresponding results are discussed.

This paper is organized as follows: In Section 2, we describe the DPD two-phase model and the
extension of the model to include two components. In Section 3, we describe the problem setup
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for R–T simulations. In Section 4, we present the results from the different simulations performed
in this study. We conclude the paper with summary and conclusion in Section 5.

2. THE DPD TWO-PHASE MODEL

In this section, we provide a brief overview of the DPD two-phase model. A detailed description
of the model can be found in Reference [16]. The evolution of a DPD particle i of unit mass is
followed by solving Newton’s laws of motion, i.e.

dri
dt

=vi

dvi
dt

= fi

(1)

where ri ,vi and fi denote the position, velocity and force vectors, respectively. The contribution
to fi arises from interparticle forces Fi j between the DPD particles. To model this, the interaction
force is split into three components, namely the dissipative, random and conservative forces. The
dissipative force FD

i j is responsible for the viscous effects in the DPD system and acts to reduce

the relative velocity between any two particles in an interacting pair. The random force FR
i j is

included to account for the degrees of freedom lost in coarse-graining. At the molecular level
there are many collisions that take place between the actual atoms/molecules. However, when a
group of atoms/molecules is represented by a DPD particle, there is a reduction in the number of
collisions. This loss is accounted for by including the random force. The random force tends to
heat up the DPD system as it supplies energy to the two interacting particles. This is in contrast
to the effect of the dissipative force that tends to cool down the DPD system. A balance condition
between these two forces is required for simulating the isothermal systems that we consider in
this study. This balance condition is achieved by applying the fluctuation–dissipation theorem [6]
to choose the parameters for the force models. The dissipative and random forces are responsible
for the hydrodynamic behavior of the DPD system. The third component of the interparticle force
of interaction is the conservative force FC

i j , which accounts for the configurational energy of the
DPD system; it is responsible for the thermodynamic behavior of the DPD system.

The functional forms of the forces between particles i and j are given by [6]
FD
i j = −��D(ri j )(ei j ·vi j )ei j

FR
i j = ��R(ri j )�i jei j and

FC
i j = −��(ri j )

�ri j
ei j

(2)

Here, ei j is a unit vector given by ei j =ri j/|ri j |, where ri j =ri −r j ,vi j =vi −v j ,� is the amplitude
of the dissipative force, � is the amplitude of random force, �D and �R are the weight functions
for the dissipative and random forces, respectively, and � is the free energy per particle. DPD is
a short-ranged method, i.e. each particle can interact only with particles that are within a certain
cut-off radius from it. This feature is attractive from a computational viewpoint since it restricts
the number of particle interactions that have to be accounted for. The cut-off radius is modeled in
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the DPD system through the weight functions that go to zero beyond the radius. The term �i j in
Equation (2) is a random variable that has zero mean, unit variance and is uncorrelated in time. It
follows Gaussian statistics and has the following properties:

〈�i j (t)〉 = 0

〈�i j (t)�kl(t ′)〉 = (�ik� jl +�il� jk)�(t− t ′)
(3)

Additional details about the force components and the choice of parameters can be found in [7].
As mentioned earlier, the fluctuation–dissipation theorem is applied to the DPD system to give

a balance condition between the dissipative and random forces. It gives the following relationship
between their amplitudes and weight functions [6]:

�D(r)=[�R(r)]2, �2=2�kBT (4)

In this study, we have chosen a commonly adopted functional form for the weight functions for
dissipative and random forces, which depends on the interparticle separation r and the cut-off
radius rc, and is given by

�D(r)=[�R(r)]2=

⎧⎪⎨
⎪⎩
(
1− r

rc

)2

(r<rc)

0 (r�rc)

(5)

The DPD equations of motion are integrated using the following modified-Verlet scheme of
Reference [7]:

ri (t+�t) = ri (t)+�tvi (t)+ 1
2 (�t)

2fi (t)

ṽi (t+�t) = vi (t)+��tfi (t)

fi (t+�t) = fi (r(t+�t), ṽ(t+�t))

vi (t+�t) = vi (t)+ 1
2�t (fi (t)+fi (t+�t))

(6)

where r,v and f denote the position, velocity and force vectors, respectively, t denotes the time, i
denotes a particle tag and � denotes an empirical parameter. The quantity ṽ is a guessed value of
the velocity. This guess is necessary because the force depends on velocity as seen from the third
line in Equation (6).

To model two-phase flows, the conservative force has to be modified to incorporate the surface
tension force and bring about phase segregation. At the molecular level, the interaction between
two atoms/molecules is attractive when they are far apart compared with the molecular diameter.
This interaction between the atoms/molecules becomes repulsive when they approach each other
and the separation is close to the molecular diameter. These features naturally give rise to the
properties of phase segregation and surface tension. From a modeling perspective, this feature can
be captured by choosing an appropriate potential such as the Lennard-Jones potential [4]. However,
at the mesolevel we do not use such a potential and hence modeling is required to capture these
features.

There are several models in the literature for modeling liquid–vapor systems with DPD [13–16].
In our two-phase model, the conservative force that gives rise to phase segregation and surface
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tension is modeled by employing mean-field theory [25] as follows:
FC=−∇�non-ideal+	∇∇2
 (7)

where �non-ideal denotes the non-ideal part of the free energy, 	 denotes a model parameter that
controls the strength of surface tension and is related to the second moment of the attractive
component of interaction potential between atoms/molecules and 
 is the density. This approach
has been employed in other mesoscopic numerical methods [26–28]. In Equation (7) the first term
is responsible for phase segregation and the second term is responsible for surface tension. The
free energy is derived from an equation of state with a van der Waals (VW) loop. In this study,
we use a VW equation of state given by

p= 
kBT

1−b

−a
2 (8)

where p denotes the pressure, 
 denotes the density, kB denotes the Boltzmann constant, T denotes
the temperature and a and b are parameters for the equation of state, which are related to the zeroth
moment of the attractive part of interaction potential and exclusion volume effects, respectively.
We will now provide the final set of equations that specify this model. Additional details about
the model can be found in Reference [16].

We see from Equation (7) that the surface tension term depends on the gradients of density. The
density 
 in the vicinity of particle i is calculated using the following expression:


i =
N∑
j=1

w(ri j ) (9)

where w denotes the normalized weight function, j denotes a particle tag, r denotes the separation
and N denotes the total number of particles. We note that the form of weight function given by
Equation (5), which is employed in the calculation of dissipative and random forces, would not
suffice for Equation (9) as we need to calculate the third derivative of density in Equation (7).
Therefore, we choose the Lucy weight function [29], used extensively in other particle-based
methods [30, 31], which for the two-dimensional case is given by

w(r,rc)=

⎧⎪⎨
⎪⎩

5

�r2c

(
1+ 3r

rc

)(
1− r

rc

)3

if r<rc

0 if r>rc

(10)

where r denotes the interparticle separation and rc denotes the cut-off radius. Using the defini-
tion of density in Equation (9) and substituting the free energy obtained from Equation (8) into
Equation (7), the final form of the interparticle conservative force is obtained as

FC
i j =

[
−
{(

bkBT

1−b
i
−a

)
+
(

bkBT

1−b
 j
−a

)}
w

(1)
i j +	w

(3)
i j

]
ei j (11)

where w
(1)
i j and w

(3)
i j denote the first and third derivatives of the weight function in Equation (10)

with respect to the interparticle separation. The parameters that are required for specifying the
interparticle conservative force are a,b,	,rc and kBT .
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Different density ratios can be obtained in the model by changing the temperature, i.e. the
temperature has to be increased to obtain lower density ratio while decreased for higher density
ratio. There are two potential difficulties when doing this. The first is that as lower density ratios
are specified, the temperature will increase toward the critical value. This model based on the
mean-field theory is not applicable in the vicinity of the critical point. This poses a limit on the
lower value of density ratio. The second is that as we change the temperature, the properties
of the fluid also change; for example, with increasing temperature, the viscosity will decrease.
These factors have the net effect of limiting the model to studies of single-component fluids at
high-density ratios. If we can formulate a method that allows us to change the density ratio without
changing the temperature, it would be an attractive tool for simulating two-phase systems using
DPD. Groot and Warren [7] have given a theory for simulating liquid–liquid systems with DPD.
They have shown that appropriately chosen parameters for the interparticle conservative force can
be used for simulating immiscible liquids. We use a fundamentally similar approach to simulate
systems in which multiple components are present. One of the components is a fluid that follows
a VW equation of state and will give rise to liquid and vapor phases, while the other component
could be either a liquid or a gas, i.e. it cannot change phase. This component is modeled using
the form of the conservative force used in DPD [7]. We now discuss how this is done.

The conservative force FC
i j between particles i and j in the formulation of DPD in Reference [7]

is given by

FC
i j =ai j

(
1− ri j

rc

)
ei j (12)

where ai j is the repulsion parameter, r is the interparticle separation, rc is the cut-off radius and
ei j is the unit vector joining particles i and j . Let us call this fluid the Groot–Warren (GW) fluid.
This GW fluid can co-exist with a fluid that has a conservative force defined by Equation (11).
Let us refer to the fluid defined by Equation (11) as the VW fluid. As we know, the VW fluid
follows a VW equation of state and depending on the simulated state point it will contain liquid
and vapor particles. Therefore, three types of interactions are possible in a domain that consists of
GW and VW fluids. These interactions are between the particles of GW fluid denoted by GW–GW,
the interactions between particles of VW fluid denoted by VW–VW and the interactions between
particles from GW and VW fluids denoted by GW–VW. The conservative components of GW–GW
and VW–VW interactions can be modeled using Equations (12) and (11), respectively. To model
the conservative components of GW–VW interactions, we can choose Equation (12) and specify
a value for the parameter ai j , which is more than the value it has for GW–GW interactions. This
will lead to repulsion between the GW and VW fluids.

With this model it is possible to study two-component systems for a wide range of density
ratios. Unlike the previous models, we do not need to change the temperature for simulations at
different density ratios. This allows us to independently study the influence of density ratio without
affecting other properties of fluids. Next, we will apply this method to a test problem.

3. PROBLEM SETUP

As mentioned earlier, the R–T instability has been studied with a wide range of numerical methods,
including MD, DPD, LBM and SPH [17, 20–22, 32, 33]. The instability develops when a heavier
fluid rests on top of a lighter fluid in the presence of a gravitational field. When this is done,
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perturbations at the interface tend to grow with time and the heavier fluid penetrates the lighter
fluid. The parts of the heavier fluid entering the lighter fluid are called spikes. The parts of the
lighter fluid penetrating the heavier fluid are called bubbles. Our objective here is not to provide
new insights into R–T instability, but only to use it as a test problem for our model. Before we do
this, we will briefly review the findings from the MD and DPD studies.

Dzwinel et al. [32] performed two-dimensional MD simulations and found that the dynamics
of bubbles and spikes are the same at the molecular and macrolevels. They also showed that, in
agreement with macroscopic observations, the growth rate coefficient for bubbles is independent
of the Atwood number. The Atwood number A is a parameter of key interest in R–T instability
simulations as it can be related to the mixing rate. It is defined as

A= 
l−
v

l+
v

(13)

where 
l and 
v are the densities of the heavier and lighter fluids, respectively. Kadau et al.
[33] performed large-scale MD simulations using up to 100 million particles and showed that
the mixing behavior at the molecular level is in agreement with the behavior at the macrolevel.
They found good quantitative agreement between the values of growth coefficients for bubbles
and spikes determined from MD simulations, experimental data and Youngs’ model [18, 19]. Prior
simulations [17] of R–T instability using the GW model were at a density ratio of 5, which
corresponds to an A of about 0.67. In this study, we have performed simulations for values of A in
the range of 0.35–1. Note that A of 1 corresponds to R–T simulations in vacuum. For the cases in
which an ambient fluid is present, we have performed simulations for density ratios ranging from 2.1
to 17.2.

The computational domain for the study is shown in Figure 1. The simulations are carried out
in a slab, i.e. they are two dimensional. Recall that our objective is to assess the model. Hence,
two-dimensional simulations are adequate. It is, however, interesting to note that Kadau et al.
[33] carried out their MD simulations in a slab as well as in three-dimensional domains, and no

Figure 1. Computational setup for Rayleigh–Taylor instability simulations.
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noticeable differences in results were reported. We will also be reporting on only single-bubble
dynamics and will not be studying the interaction of multiple bubbles. Again, this is reasonable
given the limited objective of our study.

We apply periodic boundary conditions for the left- and right-hand sides of the computational
domain. No-slip boundary conditions are applied to the bottom and top of the computational
domain. This requires special treatment for the two-phase two-component model, and this treatment
will be described now. When we look at the form of the interparticle conservative force for a
VW fluid as given by Equation (11), we see that there is a dependence on density as well as
derivatives of weight functions. This dependence makes it important for us to apply the boundary
condition in a manner such that the density calculation can be done accurately. In this study, for
implementing the no-slip walls, we model the density of wall particles to be equal to the density of
the surrounding fluid. The thickness of the wall is chosen to be equal to the cut-off radius because
there is no interaction between particles beyond this range. When particles try to penetrate the
boundary, they are re-introduced into the computational domain according to the bounce-back rule
[34]. The particles in the interfacial region are given an initial sinusoidal perturbation to initiate
the instability. In DPD, thermal fluctuations are an intrinsic part of the system and the instability
can be initiated just by the thermal fluctuations. This has been observed in MD simulations [33]
and DPD simulations [17]. We, however, apply an explicit perturbation because it accelerates the
initiation of the instability.

4. SIMULATION RESULTS

In this section we present the results from simulations that were performed to assess the two-phase
two-component model for a range of density ratios. Our focus is on lower density ratios, since this
is the range where existing two-phase models encounter difficulties. The simulation parameters
used for this study are given in Table I. The penetration h of bubbles and spikes for late-time
mixing can be expressed by the general formula [18, 35, 36]

hb,s=�b,sAgt
2 (14)

where � is a constant for a given Atwood number A, g is the acceleration due to gravity, t is the
time and the subscripts b and s refer to bubbles and spikes, respectively. The reason for using this
equation for comparing the single-mode R–T results presented in this paper is discussed below.
In this study we have performed simulations at A=1 and seven additional values of the Atwood
number given in Table II. For these seven values, we use both the VW and the GW fluids, but,
for the simulation at A=1, we use only the VW fluid. The densities of the GW fluid for the
simulations in Table II are 2, 3, 4, 6, 8, 12 and 16. This corresponds to density ratios of about
17.2, 10.8, 8.1, 5.4, 4.1, 2.8 and 2.1, respectively. The parameter �, for spikes, has been shown
in prior studies to increase with increasing values of A. The values of the repulsion parameter a
in Equation (12) for the conservative force between the particles in GW–GW and GW–VW pairs
are given in Table II. It is important to note that the parameter aGW−VW controls the miscibility
between the GW and VW fluids. An increasing value of this parameter reduces the miscibility
between the two fluids. This effect is shown in Figure 2, which shows results for a simulation
performed at A=0.35 using the parameters in Table I. The top row shows the VW fluid, while
the bottom row shows the GW fluid. The snapshots are taken at the same DPD time of 200 units.
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Table I. Simulation parameters for Rayleigh–Taylor study.

Parameter
Equation in which the
parameter appears

Value in
DPD units

kBT (4,11) 0.7
a (van der Waals parameter) (11) 1.0×10−1

b (van der Waals parameter) (11) 2.5×10−2

� (2) 2.0
	 (11) 5.0×10−3

Time step �t (6) 1.0×10−2

rc (5,10,12) 1.11
g — 1.2×10−2

Table II. Repulsion parameters for conservative
force between different types of particles.

Atwood number (A) GW–GW pair GW–VW pair

0.35 3.10×10−3 2.53×10−1

0.47 5.60×10−3 1.12×10−1

0.61 1.25×10−2 2.50×10−1

0.69 2.22×10−2 4.44×10−1

0.78 5.00×10−2 5.00×10−1

0.83 8.90×10−2 5.00×10−1

0.89 2.00×10−1 5.00×10−1

We see that as the repulsion parameter between the two fluids is increased, there is lesser mixing
between the two. The ability to choose the repulsion parameter provides us with the ability to
control the miscibility between the two fluids.

Figure 3 shows snapshots during the development of instability for an A value of 0.61. We have
shown only the particles of the VW fluid for clarity. We see that there is a slow growth of the
instability until about t=80, i.e. Figure 3(c). After this there is a rapid growth of the instability.
This late-time behavior is consistent with Equation (14). The density ratio of the heavier fluid to
the lighter fluid has an impact on the penetration rate of bubbles and spikes. This can be seen in
Figure 4, which shows the snapshots of the fluid at the same DPD time of t=120 for simulations
at different values of A. We show only the VW fluid for clarity. We see that with decreasing
values of A, i.e. with decreasing density ratio, the penetration decreases as expected since there
is a denser mass of fluid in front of the moving spikes. It is also seen that for the case with the
larger value of A, the spikes reach the bottom of the computational domain faster.

Potential flow theory [23] predicts a terminal velocity for the bubble in single-mode R–T
instability. However, the presence of vortices in the bubble–spike interface, for the case of single-
bubble cases, has been shown [24] to produce acceleration of the bubble. This is because the
vortices cause a reduction in the drag force on the bubbles and spikes. Tartakovsky and Meakin
[21] have used SPH to simulate single-mode R–T instability and have also observed a quadratic
dependence of the instability amplitude on time. In the DPD simulations presented in this study,
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Figure 2. Snapshots of the computational domain for Rayleigh–Taylor simulations at
A=0.35 for different values of repulsion parameter between the VW (top row) and GW

fluids (bottom row) at a DPD time of 200 units.

we observe vortices in the bubble–spike interface. Figure 5 shows the vector plot from one such
simulation, which was performed at A=0.35. An ensemble-averaging has been performed over
15 instances to remove the noise present in results because of thermal fluctuations. We see two
vortices in the simulation domain, which are centered approximately at (−5,−10) and (12,−12).
Such vortices have been shown in the study by Ramaprabhu et al. [24] to induce acceleration to
the motion of bubbles. Hence, we have chosen Equation (14) to describe the motion of bubbles
and spikes and have compared DPD simulation results in this study with the results presented in
a prior study.

Figure 6 shows the penetration of bubbles and spikes as a function of the square of time for the
simulations at A=0.35,0.61 and 1. Several observations can be made. In all cases, the penetration
of spikes is faster than the penetration of bubbles. The rate of penetration of spikes increases with
increasing values of A, while the rate of penetration of bubbles has a smaller dependence on A.
These observations are in agreement with the experimental data available in the literature [18].

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 59:519–533
DOI: 10.1002/fld



A TWO-COMPONENT TWO-PHASE DISSIPATIVE PARTICLE DYNAMICS MODEL 529

Figure 3. Snapshots of the computational domain for Rayleigh–Taylor simulation performed for A=0.61,
at (a) t=1, (b) t=40, (c) t=80, (d) t=120, (e) t=160 and (f) t=200.

The motion of bubbles and spikes is governed by a balance between inertia, buoyancy and drag
forces [37]. The displacement of fluid, which is being penetrated into, and the mixing render a
complicated nature to the process. This also tends to reduce the density ratio between the two
fluids [18]. Youngs [18, 19] has developed a phenomenological model for predicting the parameter
� appearing in Equation (14) as a function of A. In the model, it is assumed that the mixing process
does not impact the density ratio between the fluids. The model introduced density-dependent drag
coefficients for bubbles and spikes and couples their length scales [18]. The unknown parameter
in Youngs’ model is the drag coefficient, which is required for determining the value of � for
bubbles and spikes. A value of 3.67 for the drag coefficient has been shown to give a difference
of about 20% when compared with experimental data [18]. A comparison of the values of this
parameter � from Youngs’ prediction, with drag coefficient C=3.67, and those obtained from
our DPD simulations is provided in Figure 7. The error bars in the computational results are
estimated by accounting for the uncertainty in determining the interface due to thermal fluctuations
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Figure 4. Snapshots of the computational domain at time t=120 for simulations at the
Atwood numbers of (a) 1, (b) 0.61, (c) 0.47 and (d) 0.35. Pictures show VW fluid, GW fluid

present in (b), (c) and has not been shown for clarity in (d).

Figure 5. Vector plot of the R–T-simulation domain showing the
presence of vortices in the bubble–spike interface.

and employing Equation (14). In this figure, we also show the experimental data obtained by
Dimonte [18]. The results presented here are also in agreement with the MD simulations results
of Kadau et al. [33]. Their simulations used thin slabs as well as full three-dimensional domains.
They did not find a statistical difference between the two. We see from Figure 7 that the values
of � for bubbles have a weak dependence on A, but they have a strong dependence for spikes.
The value of � is found to increase with increasing A. The motion of spikes is resisted by
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Figure 6. Penetration of bubbles and spikes as a function of square of time for Atwood numbers of
(a) 1, (b) 0.61 and (c) 0.35. Values are in DPD units.

Figure 7. Comparison of results from DPD simulations with the phenomenological model by Youngs and
experimental data from Reference [18].

low-density gas/vapor, while the motion of bubbles is resisted by high-density liquid. Hence,
with increasing values of A, spikes penetrate with greater momentum, but bubbles penetrate at
almost the same rate. Based on the simulations that we have performed, thermal fluctuations do not
seem to have an influence on the late-time behavior of the instability, and the observations are in
agreement with the macroscopic case. This conclusion is also consistent with the findings from MD
simulations.
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5. SUMMARY AND CONCLUSIONS

In this study, we have extended a recently proposed DPD model for single-component two-phase
flows to include an additional component. The additional component and its interaction with
the two-phase fluid are modeled using the form of conservative force proposed by Groot and
Warren [7]. The repulsion parameter for the conservative force of interaction between GW and
VW fluid particles is chosen to have a value that is more than its value for the interaction between
the GW and GW fluid particles. This allows us to control the miscibility of the GW fluid in
the DPD two-phase (VW) fluid. Existing DPD-based two-phase models have a limitation of not
being able to simulate systems at low values of liquid-to-vapor density ratios. The two-component
two-phase model presented in this study has been developed to simulate systems at a wide range
of density ratios ranging from very high to very low values. To evaluate the model, we have
employed it to simulate single-mode Rayleigh–Taylor (R–T) instability. The R–T instability has
been extensively studied in the literature using various experimental and numerical methods. The
presence of vortices in the bubble–spike interfacial region leads to a reduction in the drag force
on bubbles and spikes. This leads to a t2 dependence to the late-time penetration rate of bubbles
and spikes. This behavior has also been observed in prior computational studies [21, 24].

It is encouraging that the model reproduces expected trends in the behavior of bubbles and
spikes. Simulations have been performed for density ratios ranging from 2.1 to 17.2 and also for
the limiting case where the vapor phase has vanishingly low density. The spikes are found to
penetrate faster than the bubbles. It is also found that the parameter � appearing in Equation (14)
for the penetration of spikes and bubbles has a value that increases with increasing Atwood number
(A) for the spikes. For the case of bubbles, it has been found that this parameter has a smaller
dependence on the changing values of the Atwood number. We have shown that these observations
are in agreement with experimental results and the predictions from Youngs’ model. In agreement
with MD simulations, we see that the late-time behavior of R–T instability is not influenced by the
presence of thermal fluctuations. These simulations show the ability of the new model to capture
the physics over a wide range of density ratios.
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